176 research outputs found

    Insertion Magnets

    Full text link
    Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.Comment: 19 pages, Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Repor

    Superconducting Magnets for a Final Focus Upgrade of ATF2

    Get PDF
    Original publication available at http://www.jacow.org/International audienceThe Accelerator Test Facility 2 (ATF2) at KEK is a scaled version of the final focus (FF) design proposed for a future linear collider (LC). A primary ATF2 goal is to experimentally verify the FF technology needed to obtain very small, stable beam spots at an LC interaction point [1]. Initially the ATF2 FF is made using conventional (warm) quadrupole and sextupole magnets. We intend to upgrade the ATF2 FF by replacing conventional magnets with new superconducting ones that use the same technology proposed for the International Linear Collider (ILC) baseline FF magnets [2]. With this upgrade we can investigate smaller interaction point beta-functions and study superconducting magnet vibration stability in an accelerator environment. Our ATF2 magnet cryostat design incorporates features to facilitate monitoring of the cold mass movement via interferometric techniques. The status and future plans for the ATF2 superconducting magnet upgrade are reported here

    High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report

    Get PDF
    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 9000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its instantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total number of collisions) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require new infrastructures (underground and on surface) and over a decade to implement. The new configuration, known as High Luminosity LHC (HL-LHC), relies on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 Tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 100 metre-long high-power superconducting links with negligible energy dissipation, all of which required several years of dedicated R&D effort on a global international level. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of the HL-LHC
    corecore